
US Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-530.0

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND COMPUTER SCIENCESAD-A262 332

software Quality and Testing:
What DoD Can Learn

from Commercial Practices

ASQB-GI-92-012 DTIC
SELECTE

Reproduced From 31 August 1992 MAR 3 11993

Best Available Copy M 1

93-06551

COP 3 3 0 0.97
J1TIU,,A 4 STAIE~~

AIRMICS ~~Approved foz Pu~h eob l .

115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

ii Form Approved

REPORT DOCUMENTAT!ON PAGE o No. ate:4-08,

la. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNLASSIFIED I
2a. SECURITY CLASSIFICA!ON AUTHORITY 3. DISTRIBUTK.N/AVAILIBILTY OF REPORT

N /A
2b. DECLASSIFICATION/DOWN(4RADING SCHEDULE N/A

- N/A _

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

ASQB-GI-92-012 NIA

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(It applicable)

AIRMICS ASQB-GCI N/A
6c. ADDRESS (City. State. and Zip Code) 7b. ADDRESS (City, State, and ZIP Code)

115 O'Keefe Building

Georgia Institute of Technology
Atlanta, GA 30332-0800 N/A

8b. NAME OF FUNDING/SPCNSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

AIRMICS I ASQB-GC NONE

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

115 O'Keefe Bldg. PRO43RAM PROJECT I TASK IWORK UNIT
Georgia Institute of Technology ELEMENT NO. NO. NO. ACCESSION NO.
Atlanta, CA 30332-0800 N/& N/A N/A N/A

11. TITLE (Include Security Classification)

Software Quality and Testing: What DoD Can Learn from Commercial Practices

12. PERSONAL AUTHOR(S)

LTC Mark R. Kindl

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year. Month, Dayl 15. PAGE COUNT

Study FROM TO 92/08/31 32

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necessary and Identify by block number)

FIELD GROUP SUBGROUP software testing, software quality formal inspection, •
quality control

19. ABSTRACT (Continue on reverse If necessary and Identify by block number)

With regard to software testing in DoD, we can summarize our conclusions in two fundamental ideas.
First, DoD knows how to produce quality software at low cost. This is because organizations such as DoD
STEP, Army STEP, and Software Engineering Institute have already researched and documented policies
for DoD. A few commercial software developers practice many of the DoD policies and directives now,
and produce quality software (for example, IBM FSC Houston). Second, quality cannot be tested into soft-
ware. Only a well-defined, well-disciplined process with a continuous improvement cycle can ensure soft-
ware quality. However, testing cannot be underestimated. Systematic testing activities that detect error
earliest in the life cycle are necessary to drive process improvement and optimize the development of qual-
ity software. Such testing methods as formal inspection find defects early. This enables cost-effective er-
ror resolution, identification and removal of defect causes, and thus, prevention of future defect insertion.
If practiced with discipline, such methods can evolve a self-correcting software development process that is
stable, modeled, measured, and therefore, predictable. This development process engineers quality soft-
ware faster at reduced cost.
20. DISTRIBUTIONNIAVAILIBILTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[] UNCLASSIFIED/UNLIMITEDO- SAME AS RPT. [J OTIC USERS UNCLASSIFIED

22a. NAME OT RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code 22c. OFFICE SYMBOL

LTC Mark R. Kindl (404) 894-3111 ASQB-GCI

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted.
All other editions are obsolete. SFCURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFTF D

This research was performed by the Army Institute for Research in Management Information,
Communications, and Computer Sciences (AIRMICS), the research organization of the U.S.
Army Information Systems Engineering Command (USAISEC).

The findings of this technical report are not to be construed as an official Department of Defense
or Department of the Army position unless so designated by other authorized documents.

The use of trade names in this document does not constitute an endorsement or approval for
the use of such cor.mercial hardware or software. This document may not be cited for the pur-
pose of advertisement.

Accesioa For

THIS REPORT HAS BEEN REVIEWED AND APPROVE NTIS CR,&IA
DTIC TAB 61kUnannounced Ql

Justfif tio

BY-
Distribution /

Availability Codes

Dist Avail and/or
raft QSpecial

Glenn E. Racine Ja santt

Chief, Computer Informatiori Acting Director, AIRMICS
Systems Division

Software Quality and Testing:
What DoD Can Learn

from Commercial Practices

Prepared for

the OASD(C31) Director of Defense Information

and

the Deputy Undersecretary of the Army (Operations Research)

31 August 1992

by LTC Mark R. Kindl

Army Institute for Research in Management Information,

Communications, and Computer Sciences (AIRMICS)

DISCLAIMER

This research was performed by the Army Institute for Research in
Management Information, Communications, and Computer Sciences
(AIRMICS), the research organization of the U.S. Army Information Systems
Engineering Command (USAISEC).

The findings of this technical report are not to be construed as an official
Department of Defense or Department of the Army position unless so desig,-ated
by other authorized documents.

The use of trade names in this document does not constitute an endorsement
or approval for the use of such commercial hardware or software. This document
may not be cited for the purpose of advertisement.

ACKNOWLEDGMENTS

I wish to express my appreciation to the following individuals for their
valuable suggestions and assistance during the research for and preparation of this
report:

Mr. John Mitchell, Director, AIRMICS
Mr. Glenn Racine, Chief, CISD, A[RMICS
LTC David S. Stevens, Computer Scientist, CISD, AIRMICS
Mr. Earl Lee, Senior Test Engineer, IBM Federal Systems Company Houston
Mr. Andrew Chruscicki, Air Force Rome Laboratory
Mr. Ray Paul, Army Operational Test and Evaluation Command

EXECUTIVE SUMMARY

Historically, software testing was the process of exerci.-ing d computer
program to verify that it performed as required and expected. The strategic goal
of software testing was to demonstrate correctness and quality. We now know that
this view of testing is not correct. Testing cannot produce quality software, nor can
it confirm correctness. Testing can only verify the presence (not the absence) of
software defects. Yet, the difficulty of testing and the impracticality of correctness
proof have often driven us to the dangerous perception that if testing does not find
defects, then the software is correct.

In the early 1980s, software testing concepts were neither well-developed nor
well-understood [1, p.39]. While testing techniques were many, supporting
theories were few. Even worse, little or no guidance existed for making intelligent
choices of technique(s) [2, vol. 1, p. 241. During the 1980s, Department of
Defense (DoD) and industry gathered much empirical evidence to justify many
software quality and software development techniques. As a result, the scope of
software testing has evolved into an integrated set of software quality activities
that cover the entire life cycle [3]. Software tests now take different forms and
apply to all software products including requirements, design, documentation,
test plans, and code. Each test contributes to a total quality assurance plan.
Quality assurance focuses on the front of the development process and
emphasizes defect prevention over detection. A cost-effective prevention
program first requires accurate error detection and analysis to understand where,
how, and why defects are inserted. Though testing cannot prevent errors, it is the
most important method for producing error data necessary to guide process
improvement. However, the following extract from the 1992 Software
Maintenance Technology Reference Guide [4] summarizes the difficulty of
testing:

"Software implementation is a cozy bonfire, warm, bright, a bustle of
comforting concrete activity. But beyond the flames is an immense zone
of darkness. Testing is the exploration of this darkness."

The conclusions of this report are not revolutionary, but they may be
surprising. DoD knows how to produce quality software. There are a few
contractors who produce quality software, (though not necessarily for DoD) using
many of the policies published in DoD Standards. These documents describe the
need to focus on quality activities early in the software life cycle. Developers and
verifiers should identify and remove errors during requirements definition and
design so that they do not enter the code, where finding and fixing defects is
extremely expensive. For management information and command/control

systems this is a particularly difficult task because most requirements for these
systems are based upon human demands which are highly subjective, easily
influenced, and thus, very dynamic and difficult to state precisely.

Although not in common practice yet for software development, quality
control methods adapted from the factory paradigm [51 may have the greatest
potential to move software production from an art to a true engineerng discipline
[6,7,8, 91. Both the products and the development process should be subjected to
th•.se procedures. To engineer quality into the software products requires that we
inspect/test and remove defects from requirements, design, documentation, code,
test plans, and tests. Quality control of the development process requires that we
establish standard procedures to measure defects, determine their root cuses,
and take action to prevent future insertion. Such a process is self-correcting, and
future measurements will provide convincing evidence of cost-effective
improvement. In summary, software quality improvement is evolutionary and
requires that we control, coordinate, and feedback into three concurrent
processes: the software development process, the er'or detection process (testing
life cycle), and the quality improvement process. Figure 1 depicts the
relationships between the processes in the software life cycle.

Define DEVELOPMENT
e ulremen

Develop t DesIgn t Developer
Test Plan Tests Testin

LTS7N Te ng ai€ • "•ntanance

Fo F Formal
Insp ctone In 0c~n Ins ections

Defects Defects DefectsDect

Measurement and Causal ManysIs of Defects, and Correction of Processes

PROCESS IMPROVEMENT

...... I,- DEVELOPMENT]
STEST"ING

-- [PROCESO IMPROVEMENT 1

Figure 1. Software Quality Control

ii.

A few corporate organizations have successfully implemented these
procedures [10, 11, 12, 13, 14, 15, 16, 17]. The common key element in these
successes is organization-wide commitment to a quality attitude and disciplined
life cycle procedures. However, within DoD the perception persists that such
practices are not cost-effective. Simply mandating their use has not been
adequate. Even if enforced, the techniques can be undermined, and neither
software quality nor the perceptions will change [101. DoD must jump-start these
procedures with an active campaign to establish and nurture a quality attitude
both internally and in its contractors. IBM Federal Systems Company (FSC)
Houston took 15 years to refine their processes into producing high quality
software. But, it also believes that other organizations can learn from their
procedures without investing such time. What can make this possible is the fact
that their procedures already correlate well with written DoD policies, the policies
of other corporate software developers, and the recommendations of academia.
The difference is that IBM has disciplined itself to practice them. DoD should
take advantage of this knowledge and experier nn- ow, and adapt its own practices
accordingly.

In order to initialize the production of higher quality software within DoD, we
recommend the following actions:

(1) Actively motivate a software quality attitude in DoD and government
contractors through management commitment, incentives for process
improvement and quality, and technical training. Make quality as visible as the
software product, its cost, and its schedule. For every change to software product,
cost, or schedule, DoD project managers must give equal consideration to the
corresponding cost of and effect on quality.

(2) Motivate and make standard the use of formal inspections for all
software products (requirements, decumentation, design, code, test plans, tests).

(3) Users, developers, and verifiers should jointly analyze requirements to
ensure they are clearly documented, imp!ementable, and testable. The formal
analysis of quality objectives should be an integr;A part of this effort. A joint
relationship should continue throughout the software life cycle. Eventually, this
effort should rerult in documentation or data that directly cross-references test
cases to requirements and code. At the same time, both developer and verifier
should independently plan, design, develop, inspect, execute, and analyze the
results of software tests.

(4) Measure and document errors throughout the life cycle. Est3blish a
formal defect prevention program which empowers developers and verifiers to
analyze the causes of error and enact improvements to ..iei;r own local

iii

development processes that will prevent future error insertion and enhance
detection processes.

(5) Evolve Computer-Assisted Software Engineering (CASE) tools to
support all aspec~s of software development, testing, and maintenance. DoD
should permit organizations to introduce standard CASE tools gradually in
piece-meal fashion. An organization should purchase, train, and employ only
those tools for which its sub-processes are defined in writing. Start small and
allow adequate time to learn and gain experience. Purchase and integrate a new
tool only when users understand the manual procedure the tool will automate,
and the benefit of automating it.

With regard to software testing in DoD, we can summarize out conclusions in
two fundamental ideas. First, DoD knows how to produce quality software at low
cost. This is because organizations such as DoD STEP, Army STEP, and Software
Engineering Institute have already researched and documented policies for DoD.
A few commercial software developers practice many of the DoD policies and
directives now, and produce quality software (for example, IBM FKC Houston).
Second, quality cannot be tested into software. Only a wll-defined,
well-disciplined process with a continuous improvement cycle a,.n ensure
software quality. However, testing cannot be underestimated. Systematia, testing
activities that detect error earliest in the life cycle are necessary to drive process
improvement and optimize the development of quality software. Such testing
methods as formal inspection find defects early. This enables cost-effective error
resolution, identification and removal of defect causes, and thus, prevention of
future defect insertion. If practiced with discipline, such methods can evolve a
self-correcting software development process that is stable, modeled, measured,
and therefore, predictable. This development process engineers q.ýtality software
faster at reduced cost.

This report discusses software testing practices, and more specifically, why
and how IBM's practices achieve high quality. Along the way, we will relate DoD
policies, instructions, and guidance to IBM's practices. We will also discuss
current initiatives within DoD which will impact software testing and quality.
Finally, we present our specific recommendations for software testing and quality
within DoD. We believe that these recommendations have the potential for
immediate value to DoD.

iv

1. Introduction

In late 1991, AIRMICS was asked by Mr. Paul Strassmann, Director of
Defense Information, Office of the Assistant Secretary of Defense for Command,
Control, Communications, and Intelligence, and Mr. Walter Hollis, Deputy
Undersecretary of the Army for Operations Research, to investigate softw-are
testing methods used by IBM to produce quaiity software. The objective of this
task was to identify commercial software testing practices (specifically in IBM)
which the Department of Defense (DoD) could use now to improve the cost and
quality of its own Management Information Systems (MIS) and Command/
Control Systems (C2) software. We do not judge the adequacy or effectiveness of
software testing in DoD. The detailed work of the DoD Software Test and
Evaluation Project (DoD STEP) has already identified problems with DoD
software testing practices, and has recommended solutions [2]. Some of these
have been written into DoD documentation ([18, 19, 20] for example); other
recommendations are in various stages of implementation [211. However, it is
well-known that policy and practice are not always equivalent. An effective
practice requires genuine belief in its success and firm commitment to its
procedures. For this report, we reconsidered the problems and the current
practice, and studied commercial solutions. We recommend techniques with
potentially high payoff, and suggest how to get them into DoD practice.

The scope of this study is large. We considered techniques in all phases of the
software life cycle (not just the traditional testing phase). However, because
post-development maintenance is notoriously costly, we were particularly
interested in techniques that could have maximum positive impact on this phase.
We also considered the fact that DoD itself is very iarge. Therefore, we made a
deliberate attempt to view the problems and solutions at a relatively high level. In
doing so, we desire to avoid implementation details which would generally differ
between organizations, influenced by the variety of DoD environments, missions,
and procedures.

The sponsor for this study, the Director of Defense Information, is most
interested in Management Information Systems (MIS) and Command/Control
Systems (C2) software. Nevertheless, we found that most of the successes in
producing high quality software have come from weapon-system-class projects,
or in DoD terms, Materiel System Computer Resource (MSCR) projects. There
are certainly differences between MIS/C2 and MSCR software. MIS/C2 software
incerfaces are generally between human and machine. Requirements tend to be
more subjective, more dynamic, and more difficult to define precisely. This
explains the use of rapid or evolutionary prototyping to help define user
requirements. On the other hand, MSCR soft,,rare is usually sensor or

hardware-driven. Interfaces are generally between machines. In such systems,i

the requirements may be more objective, but the corresponding real--time
constraints are often more critical and less forgiving. In MSCRs, the cost of error
effects is usually higher. So, for safety reasons, they often receive more extensive
testing.

We acknowledge that significant differences exist between MIS/C2 and
MSCR software. However, we have not restricted the scope of our investigation
to techniques used in just the MIS/C2 domain. The results of our study confirmn
that, regardlems of type, all quality software is engineered, not crafted.
Requirements and specific programming techniques differ across domains, but
the engineering principles do not. Software engineering is a standard, disciplined
application of modeling, measurement, and fundamental control processes. Both
MIS/C2 and MSCR software share similar engineering challenges, and gain
quality through common engineering practices. The empirical evidence that we
will discuss in this report strongly supports this c!aim.

2. Background

In 1981, 4:e Director for Defense ebs# and Evaluation, Office of the Secietary
of Defense initiated the Software Test and Evaluation Project (DoD STEP). The
primary goal of DoD STEP was to assess the state-of-the-art and practice in
software test and evaluation, and recommend new test and evaluation policy for
MSCR software. This was apparently the first attempt by DoD to directly address
the difficulties of testin1g software. In 1983, DoD STEP produced a six-volume set
of reports which outlined 28 specific recommendations for improving test and
evaluation of MSCR software [2]. We can summarize the relevant portions of
these recommendations as follows:

(1) Integrate testing and evaluation into software development. This
should include planning, design, and formal review of written test procedures
early during software development. Test plans should also provide for
involvement by Independent Verification and Validation (IV&V) organizations.

(2) Define software require ents and capabilities such that each is clearly
testable.

(3) Assess software risks and identify modules and/or "unctions that are
critical. Apply appropriate levels ot effort in testing these.

(4) Develop, record, and use quality measurements other than correctness.

(5) Encourage, develop, and support the use of state-of-the-art
automated testing tools and systematic methods.

2

(6) Develop tri-service standards for unified approaches to software
development, testing, and evaluation.

Recommendations 1, 2, and 3 wcre intended for near-term implementation.
Most changes to appropriate DoD standards and instructions have already been
made. Recommendations 4, 5, and 6 were considered to require long-term
implementation. We have found that these last three recommendations are in
various stages and forms of implementation. For example, in 1989, the Deputy
Undersecretary of the Army for Operations Research and the Vice Chief of Staff
of the Army chartered the Army Software Test and Evaluation Panel (Army STEP)
to develop software test and evaluation policy and procedures, and to recommend
implementation. The strategic goal of Army STFP is to improve the quality of
both Army Information Systems and Materiel System Computer Resources
(MSCR) software. Army STEP is currently implementing most of these
recommendations for the Army software community. The Army STEP is a very
important source of information for this study, because its goals are largely
consistent with our objectives. Much of the work of Army STEP sets the stage for
several of our recommendations.

In preparing to visit IBM faci!ities, we reviewed many surveys and reports of
experience with different software testing techniques in the U.S. Government,
industry, and academia. We searched for a "silver bullet" - that test tool,
method, or combination of such which could ensure quality, efficient production,
and cost-effective maintenance. During our visit to IBM Federal Sector Division
(FSD) in Rockville, Maryland, we found several thorough software testing
techniques in practice on the Advanced Automation System (AAS), the future air
traffic control system under development for the Federal Aviation
Administration. However, none seemed to be significantly different from those
that DoD policies and standards currently suggest or dictate. In fact, these
techniques apparently implement several of the recommendations of the DoD
STEP report. As a result of this visit, we reconsidered the strategy of our research.
We compared information in our reports with the information obtained from the
first visit to IBM. We correlated key testing practices at IBM FSD Rockville with
successful software development experiences reported in DoD, industry, and
academia. We began looking for simple common elements of success, instead of a
"silver bullet."

Next, we visited IBM Federal Systems Company (FSC) Houston, Texas, the
IBM facility that develops Space Shuttle software. The Space Shuttle Project is
one of a select few that has received Software Engineering Institute's (SEI) highest
Capability Maturity Model (CMM) rating of 5. The measured error rate for
software delivered to the customer, the National Aeronautic and Space

3

Administration (NASA), currently appr->ýches .01 errors per thousand lines of
source code [101. This figure is we!! below the U.S. industry average, Surprisingly
enough, there is nothing new or revolutionary about the way that IBM FSC
Houston develops or tests its software. Many of the same methods are used at
IBM FSD Rockville, as weP! as at other large software development corporations.
IBM FSC Houszon practices basic software life cycle processes, most of which
have been known for at least a decade. These include requirements analysis,
formal inspections, configuration control, quality control, developmental testing,
and independent verification and validation.

So, why does IBM FSC Houston produce such high quality software? The
differei r -esults from a strong attitude toward quality, the disciplined practice of
its bar:, cesses, and a commitment to process improvement. From manager to
proe. - .r, the entire organization strives to achieve zero-defects through
pra:,. To the classical waterfall model of software development, 'his
orgaz a ,In applies basic testing proces -s designed to identify errors as early as
possible. Once identified, defects in the software products are corrected.
However, continuous measurement, causal analysis, and subsequent cause
removal improves the development process and prevents future error insertion.
Their techniques are very closely related to concepts of Total Quality
Management (TQM) [22] and the software factory paradigm [5]. Recent
empirical evidence in other organizations [10, 11, 12, 13, 14, 15, 16, 17] confirms
the effectiveness of the software quality techniques practiced by IBM FSC
Houston. Later, we will discuss the techniques in more detail and relate them to
the DoD environment.

Critics maintain that because of fundamental differences, software
techniques used to develop and test weapons systems cannot be used efficiently or
effectively to produce information systems (and the reverse). IBM also believed
this until the late 1980s. However, on the basis of its own success in developing
high-quality flight control software, IBM FSC Houston began to develop its
ground system software (essentially MIS) using the same methods. The empirical
evidence speaks for itself. Error rates in delivered ground software decreased
dramatically to the same levels achieved in flight software. Furthermore, this
similarity in quality occurs in spite of the more extensive testing that safety critical
flight software undergoes [10]. The quality achieved with early error detection
and prevention techniques is largely independent of the type of software being
developed.

The development of large DoD Management Information Systems (MIS) and
Command/Control Systems (C2) software is costly and time-consuming. Much of
this cost and time can be attributed to the identification and repair of errors.

4

Closely related defect repair is maintenance - re- work necessitated by changing
requirements or latent defects. In such cases, software in operation must be
modified to reflect new requirements or requirements that were initially
ill-defined. To reduce the cost and time to produce and maintain software, DoD
must avoid passing immuatre. software to the testing phase, or worse, to the
customer.

Tebsting is one of the most important quality tools. Properly applied, testing
helps to identify one of the greatest impediments to quality - error. However, if
quality software is the ultimate goal, then any discussion of effective software
testing must address the entire software life cycle. This is because testing alone
can neither produce nor guarantee software quality. 'Ibsting only finds faults; it
cannot demonstrate (in a practical sense) that faults do'not exist. What we have
traditionally thought of as software testing tends to be labor-intensive, costly, and
ineffective. This view of testing is a paradox. Tebsting is a process that instills
confidence in software by cleverly plotting to undermine that confidence [23].
Nevertheless, there is empirical evidence to suggest that old concepts of quality
control can counter this view. By expanding the concepts and practices of software
testing to all areas of the life cycle, we can optimize test efforts, increase its
effectiveness, and significantly reduce its cost. The result will be the delivery of
higher quality software on schedule for less money.

One reason for general difficulty in testing software appears to stem from
differences of testing models conceived in the minds of users, managers,
developers, analysts, and testers [3]. Without common accepted concepts, all vital
communication in large software development projects will amount to
assumptions and guesswork in the best case. Therefore, in order to clarify further
discussion, we summarize several fundamental definitions from the ANSI/IEEE
Glossary of Software Engineering Terminologj [241, considered industry standards:

error - a discre~pancy in implementing requirements or design specifications. An
error may manifest itself as incorrect or undesired results.

fault - a defect in code that has the potential to cause (possibly visible) incorrect or
unexpected results. Faults are also known as bugs. Faults in code usually
result from errors.

debugging - the process of locating, analyzing, and correcting suspected faults.

failure - the execution of software fault or defect that manifests itself as incorrect
or undesired results.

5

testing - the process of exercising or evaluating a system or system components by
manual or automnated means to veiify that it satisfies specified requirements
or to identify differences between expected and actual results.

dynamic analysis - testing by executing code.

static analysis - the process of evaluating a computer program without ex'=cuting it;
e.g. review, desk check, inspection, walk-through..

correctness - use of this term usually means the composite extent to which:
(1) design and code are free from faults
(2) software meets specified requirements
(3) software meets user expectations

verification -
~ (1) the process of determining whether or not the products of a given phase

of the software development cycle fulfill the requirements established
during the previous phase.
(2) formal proof of program correctness.
(3) the act of reviewing, inspecting, testing, checking, auditing, or otherwise
establishing and documenting whether or not items, processes, services, or
documents conform to specified requirements.

validation - the process of evaluating software at the end of the software
development process to ensure compliance with software requirements.

Several of these terms have subtle relationships and differences in meaning.
It is important to recognize that errors relate to early phases of the life cycle -

requirements definition and design specification. An error in requirements or
design causes the insertion of a fault into code. However, a fault may not be
visible during code execution, Whether during testing or operation. If a fault is
executed, then it may result in a visible failure (but not necessarily). Programmers
debug code to correct faults by using visible failures as a guide. However, the lack
of failures cannot guarantee the absence of faults. Even if the fault executes, it
may not be visible as output. Furthermore, fault correction does not necessarily
imply that the error(s) that induced the fault has been corrected.

From the above discussions, one should conclude that effective software
testing cannot be limited to code. It must address all products of the software life
cycle. The definition implies that testing demonstrates:

(1) that the code satisfies a specific requirement.
(2) whether faults exist in the code.

6

However, these are only the ideal goals of testing. In practice, they cannot be
achieved in the absolute sense. Furthermore, these goals are not necessarily
mutually exclusive. Code can often satisfy user requirements (as defined) and still
contain faults. The definition can easily convey the erroneous perception that
testing can verify correctness. Correctness is a major factor in software quality,
and by definition, relates to code, requirements, and user expectations. But,
testing code only verifies the presence (not absence) of faults in code, and cannot
verify correctness or ensure quality. 'Testig coecnvrfythprsneo
requirements only if they are defined precisely as test cases. Developers and users
do not normally view requirements in this manner. Effective testing identifies
errors be-fore they become code faults, and therefore, must apply to the entire life
cycle.

Since the 1980s, the scope of software testing has expanded to cover the entire
life cycle [3]. Empirical data from software projects in the last decade provides
convincing evidence that testing in this context can significantly improve software
quality. In its current model, software testing has a variety of forms that apply to a
range of products iqcluding requirements, design specifications, documentation,
test plans, as well as code. These techniques must be coordinated, disciplined, and
integrated throughout the entire life cycle to effectively impact on quality. We will
make the case that to have maximum positive effect on a large software project,
testers must participate in development and gain a broad understanding of the
software requirements and design. Therefore, in the remainder of this report we
will refer to software testing professionals as verifiers to highlight their expanded
roles consistent with the definitions above.

3. Involve Verifiers in the Entire Development Life Cycle

DoD STEP reports [25, vol. 3) indicate that the most successful DoD software
projects established independent test and evaluation organizations. Sometimes
these organizations weret separate inidependent contractors. Other times they
were sub-organizations under the prime contractor, but having an independent
chain of command. This is an effective strategy which is in common practice to
help ensure objective, impartial, and u nbiased testing. DoD directives provide for
such independent testing activities. Ea ch military service has its own independent
test and evaluation organization. Ge neral I0BM testing policies also define the
need for such. Both IBM FSD liockville and IBM FSC Houston have
independent verification organizations within their respective projects.

The advantages of independent testing should not overshadow the need for
communication and coordination between verifier, user, and developer. Whle
verifiers should plan, design, implement, and analyze software tests

7

independently, they should not do so in isolation. Verifiers who must design and
perform operational tests cannot gain adequate understanding of the
requirements of a large software system by studying the system documentation
after development. They must take an active role in the requirements definition
and system design phases.

The biggest mistakes in software ari almost always made early during
requirements definition and design [26]. Empirical evidence indicates that the
cost of fixing errors versus time in development is an exponentially rising curve.
IBM FSC Houston data shows that average error repair costs increase 10 times in
each successive phase of the life cycle [10]. As a result of such data, in the
rnid-1980s, IBM FSC Houston decided to move 30% of its resources used in
testing of code to assist in the requirements definition and design phases. This
decision resulted in a significant increase in software quality. Furthermore, this
shift resulted in a net decrease in total cost. Shell Research reported similar
results [12]. The conclusion is obvious - verifiers should participate in
requirements analysis, definition, and design. It is far cheaper to find and fix
errors before they become faults in the code.

DoD STEP identified the need for early test and evaluation activities in
software development. It also identified the need for integration of independent
verification organizations. One result of the DoD STEP recommendations is that
DoD Instruction 5000.2 states "Both developmental and operational testers shall
be involved early..." Army STEP has further defined procedu~res for close
coordination between verifiers, users, and developers. The new DA Pam 73-1
Volume 6, Software Test and Evaluation Guidelines [27] desc.-ibes how software
testing and evaluation activities relate to each phase of the software life cycle. The
adoption of all or portions of DA Pam 73-1 into DoD instructions and directives
could reinforce and more precisely define the comrrnifications, that should occur
among verifiers, developers, and the customer.

The Air Force Standard Systems Center (SSC) at Gunter Air Force Base in
Alabama, takes customer involvement seriously. Some of their standard
information systems development work is contracted to local software firms.
However, as dictated by the terms of the contracts, Government personnel are
participating members of contractor developer and verifier teams. While this has
caused a few unusual and difficult situations, the overall strategy appears to work.
SSC anticipates that thie result of these contracts will be well-defined
requirements and design, better quality software, and systems that are more easily
maintained after acceptance [281. This SSC practice could be a model for DoD
contracted software development.

DoD Standard 2167A [19] clearly requires traceable and testable
requirements. Traceable requilements are defined and formulated such that
direct cross-referencing exists among requirements, design specifications, code,
and test cases. Traceability also implies that each requirement can be
implemented in both design and code. A requirement is testable if and only if it is
written so that developers and verifiers can prepare specific test cases that can
clearly confirm satisfaction of the specific requirement.

At both IBM FSD Rockville and IBM FSC Houston, developers and verifiers
work together to ensure that requirements are both traceable and testable when
defined. In fact, test engineers for the Advanced Automation System (AAS)
project built and use a software tool which automatically maintains the
relationships between requirements and test cases. This tool is essentially a
specialized database management system that assists developers and verifiers in
test management and configuration control. While such tools help to manage the
relationships and maintain the consistency of the software products once
developed, they cannot replace the difficult work required beforehand to ensure
traceability and testability. As practiced by IBM, success in this work is a direct
result of close communications and coordination among the users, developers,
and verifiers. IBM describes the relationship between its developers and verifiers
as friendly-adversarial. This means that both groups work together with the
customer toward a mutual understanding of the product requirements and design
and the early identification of errors. Finding and preventing errors are
considered primary job responsibilities for both develope-s and verifiers. At the
same time, each group independently designs its respective test plans and cases for
later verification and validation.

4. Formally Inspect All Software Products

Empirical evidence indicates that dynamic software testing (i.e. execution of
code) alone cannot ensure quality and is not cost-effective. Yet, dynamic testing is
essential to confirm software quality. Dynamic testing should be planned at the
same time that requirements are analyzed and defined, and then executed
systematically as planned. However, if quality is the objective, then verification
cannot wait for code. Early detection techniques must be applied extensively to all
software products so that dynamic testing can be a cost-efficient and graceful
confirmation of functionality and quality.

The analyses necessary to define implementable, traceable, and testable
requirements help to avoid errors. However, one of the most effective early
detection methods is the formal inspection [29, 30] (also referred to as the Fagan
Inspection [31]). Developed by Michael Pagan in 1976, the formal inspection is a

9

general-purpose verification method. It is product-independent and can be
employed to identify errors in requirements, design, documentation, test plans, or
code. Thus, it has the potential to identify and permit removal of errors very early
during the software life cycle. In fact, IEBM FSC Houston reports that their
application of formal inspections accounts for the identification of 80% of the
cirrors in the U.S Space Shuttle flight softmare. Even so, the acceptance of formal
inspection into general practical use has been slow for several possible reasons.
The technique has a reputation for being "low-tech." It requires a fair amount of
intensive, detailed work [15], although it does appear that automated tools could
enhance some of its procedures. The availability of good empirical data verifying
its cost-effectiveness has not been available until the last several years. Even now,
published results are not prevalent. At least one software corporation considersV
its use of formal inspection proceýdures as a competitive advantage, and thus,
declined to divulge their procedures [141.

A formal inspection is essentially a testing technique in which a software
product is formally examined by a team of experts. These e.'cperts include the
author of the product and several of his/her peers. Depending upon the product,
the team may also include a customer representative and a verifier. The primary,
objective of the team is to find as many errors as possible. In such a situation,
finding errors must be considered in a positive sense, i.e. the team intensively
scrutinizes the product (code or documentation), not the author's abilities. The
team's responsibility is to help the author(s) by identifying mistakes, thus
preventing their entry into the next phase of the life cycle. This is done by
paraphrasing lines or portions of the software product at a slightly higher level of
abstraction or from a different perspective (such as from the verifier's view). The
error detection efficiency of this process results from its formality and intensity.
The procedures are defined and repeatable. Standard checklists ensure that
common mistakes are not overlooked.

As practiced by IBM PSC Houston, the formal inspection is the cornerstone
of software verification and process improvement. All software products must
submit to and pass a formal inspection prior to acceptance into configuration
control or submission for execution testing. Each product is examined by an
inspection team tailored to that product. For example, the inspection team for a
requirements definition document will include the customer, a requirements
analyst, a verifier, a proprannmer, as well as the author. The inspection team for
the independent verifier's test plan will include the customer, a requirements
analyst, and severai verifiers. The inspection team for the developer's test plans
will include several requirements analysts and programmer's. These particular
examples illustrate how the tailoring of inspection teams establishes a cooperative
yet independent relationship between developer and verifier. Each inspection

10

team includes a senior peer who acts as the moderator. He must foster
cooperation and focus on the objective - to find errors. Management strongly
supports formal inspections, but does not participate in them. This ensures that
inspection results are used to rate the effectiveness of the technique and not the
performance of individuals. Inspection teams record errors identified, and
subsequently, require authors to correct them. The requirement for
re-inspection depends upon the severity and number of errors recorded. Error
statistics from inspections of all products and phases of the software life cycle are
collected to measure process effectiveness.

The advantages of formal inspections can be ,ignificant. Since formal
inspections are reported to detect 80% of all errors, subsequent dynamic testing
of code becomes more efficient. Fewer execution failures cause fewer
interruptions. This translates to additional time for more thorough testing, and
possibly less time required for regression testing. Formal inspections and dynamic
testing techniques compliment each other. Each can detect flaws that the other
cannot [14, 151. Execution testing detects faults and failures, the manifestation of
errors. On the other hand, formal inspections detect the errors which potentially
cause faults and failures.

Besides enabling early and effective error detection for a range of software
products, there are several indirect advantages of formal inspections. At IBM they
encourage the friendly-adversaridal relationship between developers and verifiers
through teamwork, cooperation, distributed risk, and consensus. Developers,
verifiers, and the customer tend to focus effort on the most important aspects of
software development - requirements and design. Time and cost required for
testing and repair are diminished [321. Formal inspections foster
understandability and standardization in all software products. They provide
excellent on-the-job-training for all participants since they teach technical
standards and organizatioal culture [12]. Furthermore, formal inspections
proliferate good ideas and eliminate bad approaches [31].

Formal inspections can require from 15% to 25% of total development time
[32], so DoD developers may be reluctant to expend limited resources to support
them. However, the resources necessary to implement them are not as great as
those necessary to find and fix errors later [10, 11, 12, 13, 14, 15]. A cost-benefit
analysis at Shell Research [12] reported an average 30 hours of repair and
maintenance time saved for every hour of inspection time invested.
Bell-Northern Research [15] reported a 33:1 return. Other organizations have
reported more conservative returns of 2:1, 6:1, and 10:1 [14]. Note that these
estimates are based entirely on direct costs. They do not include other possible

11

savings from indirect costs related to customer confidence and the avoidance of
the consequences of operational failure.

DoD Instruction 5000.2 specifically states that DoD contractors should
practice walk-throughs, inspections, or reviews of requirements, documen~ts,
design, and code [18]. Of these, the formal inspection is the mast painstaking and
work-intensive technique. Reviews and walk-throughs are also useful, but they
have other goals, so they are less effective for detecting errors [32]. While use of
formal inspections has demonstrated the production of high softwvare quality at
overall reduced cost and time [31], the earlier investment in cost and time can
easily dri-e a decision not to employ them. This is apparently because the
consequences of quality are not as visible as those of cost and schedule in the early
phases of the life cycle. We will discuss more about this later. The fact is that the
resources expended to implement formal inspections can pay for themselves in a
short time by removing more expensive testihig and maintenance costs.

Of the techniques we discuss in this- report, formal inspection app:ears to be
the basis for the others. This technique stimulates, coordinates, and checks the
developer/verifier coordinated requirements definition process. It does this by
promoting teamwork and shared responsibility for quality. It also produces early
defect data necessary to measure, feed, and guide process improvement. In
addition to IBM, several other companies have described their experiences with
the successful introduction of formal inspections. A few offer tips for overcoming
the difficulties of instituting them [12, 15]. We summarize. these tips as follows:

(1) There must exist a belief that formal inspections will beý effective.
Dynamic code testing will always seem to be faster and moee effective,' but this is
not true [151. 'lb change this mind-set will require an active campaign 1 to sell the
efficiency of formal inspections to all levels of the organization. Circulating
reports of success and training programs can accomplish this.

(2) Everyone must clearly understand formal inspection procedures. They
are not informal. They are not cursory reviews, audits, or walk-throughs. Formal
inspections are manual, intensive, detailed, and painstaking. Education and
training are the best ways to prepare.

(3) It is essential to have management support. Management must be
decisive and committed to the belief that formal inspections will pay off. This
requires that the cost of formal inspections be quantified, and resources be
allocated to accommodate them into the schedule. Also, organizations must
anticipate adjustments to the procedures as they adapt inspections to their own
local environments.

12

(4) Early successes are critical, but also difficult to achieve. Start by
inspecting only one or two types of documents (for example, requirements
definition). The first products inispected may be riddled with defects. Early
inspections can easily become muddled in details until problems with standards
and procedures are resolved. Therefore, good moderators who can maintain
group momentum are essential in the early stages.

(5) Keep detailed statistics on defect identification and associated actions.
This data feeds process improvement and provides clear evidence of effectiveness.
It will confirm belief in the process and strengthen commitment to it.

(6) The best training for inspections is on-the-job training. However,
continued formal training of inspection team moderators is particularly
important. Otherwise, as the effectiveness of the process becomes apparent to all,
the amount of materials and the number of required inspections can overwhelm
the best-planned schedules.

(7) The local development process must be well-defined and understood
by the participants. Otherwise, formal inspections will be ineffective. [31]

5. Use Error Data to Guide Defect Prevention and Process Improvement

Early identification and correction of errors is critical to software product
correctness and quality. Correcting errors in software is a fix, but not a solution.
Software errors are often the symptoms of a more- fundamental process defect.
'lypical process defects might be failure to follow a standard practice,
misunderstanding of a critical process step, or lack of adequate training. In the
software factory paradigm [51, the software development process is a special
manufacturing system to which many traditional quality control principles apply.
The developers and verifiers themselves (owners of the process) use error data to
measu re and improve the process, until it reaches a repeatable, predictable steady
state. Based on principles of Total Quality Management (TOM), formal process
improvement implements error prevention by removing the causes of errors
within the development process and the causes of not finding these errors earlier
in the detection processes.

IBM FSC Houston practices process improvement. Developers and verifiers
form small process evaluation teams (in TOM terms, process action teams) to
analyze defects and identify their causes. These teams also determine how to
remove defect cause, and subsequently implement required process changes. The

13

effectiveness of these tearns is rooted in TQM. Iha= members are the analysts,
programmers, and verifiers whose primary daily responsibilities are software
development. Therefore, those who execute the development process also
execute process improvement. The key to success is total management support
and encouragement. The responsibility to analyze and execute rests with the
developers and verifiers. The responsibility to allocate resources and make
decisions that support process improvement rests with the managers.

The practice of process improvement has a number of positive outcomes. A
process that is partially or totally undefined will have to be defined in writing in
order to subject it to process improvement. This further stabilizes the process and
tends to make it repeatable. The continued practice of improvement defines clear
procedures for change and enables gradual wchnology insertion. There is less
resistance to new technology, because the implementors of change are the same
people who suggest it. At the very least, there will be a willingness to try new ideas.

aohrimportant advanztage of process improvement is its built-in
on-the-job training environment. Membership on a process evaluation team is
an excellent first assignment for new personnel. This responsibility encourages
immediate participation and teamwork, teaches the process definition and its
change procedures, and stimulates creative t~hinking in the form of improvements.
New personnel are generally enthusiastic about contributing and bring fresh ideas
into the organization.

The long-term benefits of process improvement are also significant. The
procedures make the development process self-correcting. Therefore, over time,
the number of errors inserted during each phase of software development
decreases. This translates to a decrease in re-work and greater efficiency for all
sub-processes. For example, verifiers may experience fewer problems during
dynamic testing, because fewer (if any) serious -rrors exist that could interrupt,
delay, or prevent test completion.

Process improvement techniques are not new. As previously mentioned, they
are essentially TQM techniques applied to the software development process.
The SOI Capability Maturity Model (CMM) for the software development process
contains procedures for process improvement [33]. Furthermore, the SEI Quality
Subgroup of the Software Metrics Definition Working Group and the Software
Process Measurement Project Team have developed a draft framework for
documenting software problems [34]. Such a standard collection mechanism can
ultimately measure progress, enable estimations, and guide process
improvement. Michael Fagan, who originaliy developed formal inspection
procedures [29], now trains developers and managers to improve their software
productivity and quality with a :,hree-step process -formal process definition,

14

formal inspection of all software products, and continuous process improvement
(through defect cause removal) [3 1]

DoD could achieve significant efficiencies in both its software development
process and its software quality by applying process improvement. 'Curent DoD
emphasis on TOM will help to encourage the incorporation of software process
improvement techniques. Past and current DoD practices rely on -developers to
learn from their mistakes [2, vol. 1]. However, as this learning is lost through
personnel and project turnover, organizations are doomed to repeat their
mistakes. Formal process improvement eliminates the causes of error, documents
learning, and hardens solutions against erosion by time. Process improvement has
been proven effective in several software development environments [5]. It can
move a software development process from one that is highly reactiv,'z and ad hoc
to one that is statistically stable, predictable, repcatable, and efficient.

6. Actively Motivate a Quality Attitude

IBM FSC Houston's empirical evidence is convincing and its recipe is simple:
Quality software results from basic disciplined processes, supported by a genuine
quality attitude [10]. But, the greatest impediment to implementation facing DoD
appears to be the lack of a software quality attitude. This is not to say that DoD
does not care about producing quality software. Rather, cost, schedule, and the
product take greater priority because they have the highest visibility during the
early phases of software development. Until. the testing phase, quality is
essentially an unknown or invisible. However, by this time, cost and schedule
drive the software through some ad hoc formis of testing (because, if the software is
riddled with defects, dynamic testing will be extremely time-consuming, costly,
and difficult). Once the software is in customer hands, poor quality will be highly
visible because the cost to fix it is high on the exponential scale (independent of
the cost of damage to customer confidence!).

The implementation of early defect identification, defect prevention, and
process improvement in large software development environments is apparently
difficult [12, 15]. They are perceived as labor-intensive work with little
short-term payoff. Investment returns are not realized until late in the software
life cycle - during system testing, operation and maintenance. Within DoD this is
a particularly critical problem. DoD program managers are generally not
rewarded for delivering systems with good operation and maintenance records.
These managers usually control the development phases of the program. Thus,
costs, schedules, and product functionality drive their decisions. But, the success
of defect identification, defect preventions, and process improvement demands an

15

early and continuous commitment. This means that managers must be wiiling to
adjust cost, schedule, and resource allocation to support this process.

We have made the case that DoD knows how to produce quality in software.
Then, why have current DoD instructi-ns and directives been unable to make this
happen? Basic processes are easy to mandate; belief in their long-term payoff is
not. Unfortunately, without the belief that they work and an associated

cormmitment at all levels to support them, it is possible to merely satisfy the
requirements, and thus, render them ineffective [10]. The soludon is to make

quality more visible than cost, schedule, or product. The effects of poor quality
must be quantified early in a project. Program managers must compare cost of
these effects plus, the cost of re-work against the cost to implement formal [
inspections and process improvement." To motivate this, qudlity must be made
equivalent to cost and schedule for judging program success.

IBM FSC Houston has a well-defined motive for producing quality software
- astronaut lives depend upon it! This forces quality to be the priority objective
early and continuously. However, such a motive for quality is not common to all
software. MIS software is generally not safety critical. Command and control
software failures may have some safety implications, but these are generally
indirect - the result of human decisions based on faulty information. However,
DoD might learn from one Japanese corporation - Fujitsu. In 1965, Fujitsu
accepted a contrac. stating that "if a customer receives any damage due to
malfunction of Fujitsu equipment, Fujitsu will compensate any damage
unlimitedly." [351 While not a software contract, this example does illustrate that
a quality guarantee based on consequence can create high visibility. This may be
one way to help stimulate the use of proven quality techniques. Untortunately,
most (if not all) U.S. software firms take quite the opposite approach. Rather than
guarantee compensation for poor quality, they issue statements of limited liability
for the software they create. The widespread issuance of such statements indicates
a low level of confidence by softvrare makers in the quality of their own products.
Furthermore, this may also indic..-Le a general unwillingness to sign such contracts.

In contrast to IBM FSC Houston, quality in DoD MIS/C2 software is not
clearly defined, and therefore, is rarely a motive. However, there are ways to
establish quality objectives. In 1980, as part ot a joint Air Force Rome Labs and
AIRMICS project, General Electric initially developed a method to plan, insert,
and measure quality requirements in software. Subsequent contractors for Rome
Labs have improved this method. In 1985, Boeing Aerospace Company finalized
a detailed framework for establishing software quality objectives and
requirements from organizational needs [361. The resulting reports provide

-dance for measuring and evaluating requirements satisfaction throughout the

16

life cycle. Included are evaluation checklists that are similar to those used by IBM
in their formal inspections. The ideas in this framework have appeared in other
DoD manuals, but only as guidelines. For example, they are contained in Draft
Army Technical Bulletin 18-102-2 (1985), and US. Army Information Systems
Software Center Pamphlet 25-1 (1990), Software Quality Engineering Handbook
[37]. In contrast to well-published results of formal inspections, Rome Labs'
Software Quality Framework has received less visibility. However. the adoption
and extensive use of very similar quality methods by NEC Corporation [38] and
Metriqs, Inc. is evidence of its potential value [39].

DoD appears to have a more positive, pro-active attitude toward software
quality. We, believe that the establishment and support of the Army Software nIst
and Evaluation Panel (Army STEP) is very, significant. The mandate to employ
the Army STEP Metrics may be the first high-level action taken to implement
software quality practices in the military. The Army's serious attention to metrics
represents a significant shift by Army management toward software development
as an engineering discipline. This also indicates management willingness to
expend the resources for early measurements to gain control of quality. We
believe that DoD should take thiis opportunity to encourage, support, and
motivate these efforts. Management supported metrics are a positive first step.
However, these should not be co' Nected for the sake of project management alone.
Quality requirem-ents should be formulated during the requirements definition
phase. This could be accomplished using the Rome Labs Software Quality
Framework. Once established, quality requirements should be measured through
standard metrics and checked in detail through formal inspections using the
checklists associated with the requirements.

7. Introduce CASE Tools to Support Wel.-Defined Sub-Processes

Because Computer Assisted Software Engineering (CASE) tools apply to all
aspects of software development including testing, and because we have expanded
the view of testing to encompass the entire life cycle, we discuss here the potential
impact of CASE technology on DoD, and its relationship to the techniques
presented thus far.%

The activities of software engineering which most impact software quality
(coordinated planning, formal inspection, configuration control, verification
testing, and process improvement) should be repeatable, and yet, adjustable if
they are to be effective. Often, the most efficient means of standardizing a process
and making it repeatable is by automating it. Computer Assisted Software
Engineering (CASE) tools do this for software development and testing
processes. However, automating any process first requires that its procedures be

17

well-defined, well-understood, and practiced. CASE technology cannot impose
a methodology on an ad hoc software development environment [401. Applying
CASE technology in order to structure a manual process that is not working
simply exacerbates a poor process. For example, without a well-defined,
well-understood manual procedure for, configuration management, an
organization should not expect to effectively control software configuration using
a CASE tool. Automating a bad process only escalates a bad situation. Initially,
DoD organizations should use CASE tools only for those processes which are
well-defined and practiced.

There are many examples of organizations which have adopted CASE tools
only to abandon them because the anticipated improvements never materialized.
One reason for this was described above., Another-reason is an underestimation
of the CASE tool training requirements [41]. Because CASE tools support
methods, but do not impose them, an organization must recognize the differenci
between learning the tool and learning the method the tool supports (especially f
the supported method is not currently practiced!). There are learning curv'-s
associated with each [41]. If the method is understood and practiced, then orly
the tool presents a learning shortfall. However, if the tool supports a new meth .d
unfamiliar to the developers, then two shortfalls exist. The training and time to
overcome such may add significantly to CASE tool investment. The compov i-d
training requirement (for both method and tool) will also extend the time required
to show a return on the investment. DoD should sensitize management to the
large investment required to train personnel in both the new tools and, as
necessary, the associated new methods.

The adoption of CASE technology within DoD should be an evolutionary
process that begin-, small and grows gradually. Controlled institution of CASE
tools has a greater potential for immediate success and visible investment return
than a massive, overwhelming introduction. The adoption of standard software
process metrics givesfloD~the means to establish the value of CASE tools. DoD
should not force its managers to overreact. Rather, it should make the time and
financial resources available for managers to adequately train and methodically
insert standard CASE tools into practical use. Both CASE tool users and
management must restrain expectations of immediate results. They must
anticipate the learning curve(s), measure progress, and continue with process
improvement to insert additional CASE technology.

Our observations of and discussions with IBM FSC Houston strongly support
this approach to introduction of CASE tools. Developers at IBM FSC Houston
have produced and continue to produce high quality software using manual
processes (supported by non-integra 'ýd databases and word processing tools).

18

CASE tools are just now being considered. However, deployment of CASE tools
will be closely monitored and controlled through formal process improvement
[42]. This will ensure that the adoption of tools will properly enhance their own
methods. CASE technology will probably cause changes (improvements) in their
current methods, but only through the formal improvement process. We highly
recommend that DoD consider process improvement as the technology insertion
mechanism for instituting CASE tools.

8. Conclusions and Recommendations

DoD knows how to produce quality software. The Army has recognized the
critical relationship -between measurement and quality control, and is now
implementing mechanisms that can decrease the cost and increase the quality of
software production. Software testing is related to these mechanisms as a key
data-gathering technique. However, quality cannot be tested into software.
Quality must be designed through engineering. Engineering mequires an
expanded view of testing to maximize the effectiveness and reduce the cost of
verification and acceptance testing. DoD testing activities should begin during
requirements definition and should influence the entire software development life
cycle.

The general principles of engineering applied by IIBM and other commercial
companies to produce quality MIS, C2, or MSCR software are the same -

modeling, standardization, measurement, and process control. However, the
empirical evidence has come from environments in which the developing/
testing/maintaining organization, the software, and the customer have been
relatively constant 'for a long period of time. For example, IBM FSC Houston has
developed and tested the Space Shuttle flight and ground software for NASA for
over 15 years, adequate time to stabilize their development process. However,
real cost savings have been reported even in the case these procedures were
initi;;ed during the -verification phase of a project [31]. Nonetheless, our
recommendations should be viewed in the context of the DoD environment.
There exists a variety of contractors, customers, software, and relationships
among them. Detailed standardization of software engineering activities would
be too restrictive and probably counter-productive. Instead, DoD guidelines
should be standardized locally through detailed, written procedures.

On the basis of our discussions and conclusions, we recommend the following
actions:

(1) Actively motivate a software quality attitude in DcD and government
contractors. Implement by adopting and training a process (such as the Air Force

19

Rome Labs Software Quality Framework [36]) to establish quality objectives
within software requirements. This will increase the importance and visibility of
software qua!ity by providing clear motivation. Thus, quality will balance with
product functionality, cost, and schedule.

(2) Make the use of formal inspections standard for all software products
(requirements, documentation, design, code, test plans, tests). For this, DoD can
provide high-level guidance in the form of generic checklists. Examples are
already published in the military [37]. From these generalized lists, more specific
local standards can be developed.

(3) Users, -developers, and verifiers should participate jointly in
requirements analysis and definition. They should be mutually responsible for
ensuring that requirements are clearly documented, implementable, and testable.
They should also define quality objectives. Their goal should be to produce clear
documentation which directly cross-references test cases to requirements and
code. Employ formal inspections to enable joint participation throughout the
software life cycle. At the same time, the developer (for development testing) and
verifier (for operational testing) should independently plan, design, develop,
inspect, execute, and analyze the results of software tests.

(4) Standardize the measurement and documentation of errors throughout
the software life cycle. Establish a formal defect prevention program which
empowers developers and verifiers to analyze the causes of error and enact
improvements to the development process that will prevent future error insertion
and enhance detection processes.

(5) Encourage evolutionary introduction of standard CASE tools for all
software life cycle sub-processes including development, testing, and
maintenance. Each organization should. purchase, train, and employ only those
tools for which corresponding processes have been defined. Allow adequate time
to learn and gain experience with both the ýmethod and the tool. Purchase and
integrate new tools only when users understand the supported process, recognize
the benefit of automating it, and are ready' to be trained. Use formal process
improvement as the technology transfer mechanism.

A recent issue of Army Research, Development & Acquisition Bulletin,
contained a short article reprinted from a 42-year-old issue of the Proceedings of
the Institute of Rado Engineers [431. The article, entitled "Quality in
Engineering," emphasizes the importance of quality in the engineering of
electronic equipment. The following is an extract of this article:

20

\ .'- / -.

•\ , . ./" 7

"Quality is never an accident. It is always the result of high intentions,
sincere effort, intelligent direction, and skillfid execution. Quality cannot
be inspected in ... quality must be designed in!"

This passage is as true today of software as it was then of hardware. Quality cannot
be tested into software. Furthermore, inspection alone is ineffec've. Quality
results from belief in and commitment to quality objectives, well-defined
processes, continuous measurement supported by formal inspection, and process
improvement.

/2

'7,

21

/

REFERENCES

1. Buckley, F.J. and Poston, R., "Software Quality Assurance," IEEE
Transactions on Software Engineering, vol. SE-10, no. 1, Jan 84, pp. 36-41.

2. DoD Software Test and Evaluation Project (STEP) Volumes 1-6, 1983.
(1) Final Report and Recommendations
(2) Software Test and Evaluation: State-of-the-Art Overview
(3) Software Test and Evaluation: Current Defense Practices Overview
(4) Tnanscript of STEP Workshop, Mar 82
(5) Report of Expert Panel on Software Test and Evaluation
(6) Thctical Computer System Applicability Study

3. Gelperin, D., and Hetzel, B., "The Growth of Software Testing,"
Communications oftheACM, vol. 31, no. 6, Jun 88, pp. 687-695.

4. Software Maintenance Technology Reference Guide, Software Maintenance
News, Inc., 1992.

5. Humphrey, WS., "Software and the Factory Paradigm," Software Engineering
Journal, Sep 91, pp. 370-376.

6. Fernstrom, C., Kjell-Hakan, N., and Ohlsson, L, "Software Factory
Principles, Architecture, and Experiments," IEEE Software, Mar 92, pp.
36-44.

7. Basili, VR., and Musa, J.D., "The Future Engineering of Software: A
Management Perspective," IEEE Computer, Sep 91, pp. 90-96.

8. Dunham, J.R., "V&V in the Next Decade," IEEE Software, May 89, pp.
47-53.

9. Martin, R.J., "The Application of the Principles of Tbtal Quality Control to
Mission-Critical Software," ISYE 6301, 28 Nov 84.

10. IBM FSC Houston..Software Process Show-case, IBM Federal Systems
Company, Houston, TX, 2-3 Apr 92.

11. Dichter, C.R., "Two Sets of Eyes: How Code Inspections Improve Software
Quality and Save Money," Unix Review, vol. 10, no. 1, Jan 92, pp. 19-23.

12. Doolan, E.P. (Shell Research), "Experience with Fagan's Inspection
Method," Software - Practice and Experience, vol. 22(2), Feb 92, pp.
173-182.

13. Royce, W, "Pragmatic Quality Metrics for Evolutionary Software
Development Models," TRW-TS-91-01, TRW Systems Engineering &
Development Division, Jan 91.

22

14. Ackerman, A.E, "Software Inspections: An Effective Verification Process,"
IEEE Software, May 89, pp. 31-36.

15. Russell, G.W (Bell-Northern Research), "Experiences with Inspections in
Ultralarge-Scale Developments," IEEE Software, Jan 91, pp. 25-31.

16. Blakely, EW, and Boles, M.E., "A Case Study of Code Inspections,"
Hewlett-Packard Journal, vol. 42, Oct 91, pp. 58-63.

17. Cavano, J.P., and LaMonica, ES., "Quality Assurances In Future
Development Environments," IEEE Software, Sep 87, pp. 26-33.

18. Defense Acquisition Management Policies and Procedures, Department of
Defense Instruction 5000.2, 23 Feb 91.

19. Defense System Software Development, DOD-STD-2167A, 29 Feb 88.

20. Defense System Software Quality Management Program, MIL-STD-2168A
(Draft), 6 Aug 91.

21. Final Report (Draft) of the Software Test and Evaluation Pane! (STEP) by the
Standards and Regulations Implementation Team (SRIT), 29 Jan 92.

22. Demming, WE., "Out of the Crisis," MH Center for Advanced Engineering
Study, Cambridge, MA, 1982.

23. Graham, D.R., "Test is a Four-Letter Word: The Psychology of Defects a.d
Detection," CrossTalk. The Journal of Defense Software Engineering, No. 35,
Aug 92, pp. 2-7.

24. ANSI/IEEE Standard Glossary of Software Engineering Terminology,
ANSI/IEEE Std 729-1983, IEEE, 1983.

25. DoD Software Test and Evaluation Project (STEF), Software Tbst and
Evaluation Manual Volumes 1-3.
(1) Guidelines for the "neatment of Software Test and Evaluation Master
Plans, Oct 85.
(2) Guidelines for Software Test and Evaluation in DoD, 25 Feb 87.
(3) Good Examples of Software Testing in DoD, 1 Oct 86.

26. Williamson, M., "Beyond Rube Goldberg," CIO, Mar 91, pp. 54-59.

27. Software Test and Evaluation Guidelines, DA Pamhlet 73-1 (Draft), vol. 6, 15
Jun 92.

28. Informal discussions with Air Force Standard Systems Center, Gunter Air
Force Base, AL, Mar 92.

2

23

29. Fagan, M.E., "Design and Code Inspections to Reduce Errors in Program
Development," IBM Systems Journal, vol. 15, no. 3, 1976, pp. 182-211.

30. Pagan, M.E., "Advances in Software Inspections," iH-7E Transactions on
Software Engineering, Jul 86, pp. 744-751.

31. Pagan, M., "Productivity Improvement through Defect-Free Software
Development - An Executive Overview," Michael Pagan Associates, slide
presentation by Dr. Pagan to Army Strategic Defense Commr nd, Huntsville,
AL, 31 Aug 92.

32. Brykczynski, B., "Software Inspections," SDIO/SDA Software Engineering
Newsletter, vol. 1, no. 2, May 92.

33. Paulk, M.C., Curtis, B., and Chrissis, M.B., "Capability Maturity Model for
Software," CMU/SEI-91-TR-24 and ESD-91-TR-24, Software
Engineering Institute, Carnegie-Mellon University, Aug 91.

34. Florac, WA, "Software Quality Measurement: A Framework for Counting
Problems, Failures, and Faults (Draft)," The Quality Subgroup of the
Software Metrics Definition Working Group and the Software Process
Measurement Project Team, Software Engineering Institute,
Carnegie-Mellon University, May 92.

35. Ochi, Hiroyuki, "Japanese Software Quality", Briefing notes delivered at 4th
Annual Software Technology Conference, Salt Lake City, UT, 13-17 Apr 92.

36. Bowen, T.P., Wigle, G.B., and TMai J.T., "Specification of Software Quality
Attributes: Software Quality Evaluation Guidebook," RADC-TR-85-37
Volume 3 of 3, Rome Air Development Center, Feb 85.

37. Software Quality Engineering Handbook, Draft U.S. Army Technical Bulletin
(TB) 18-102-2, ArmyyAutomation, 25 Mar 85 (also U.S., Army Information
Systems Software Center Pamphlet 25-1; Feb 90).

38. Sunazuka, T., Azuma, M., and Yamagishi, N., "Software Quality Assessment
Technology," Proceedings of the 8th International Conference on Software
Engineering, IEEE, 1985.

39. Murine, G.E., "Integrating Software Ouality Metrics with Software QA,"
Quality Progress, Nov 88.

40. Jones, C., "CASE'S Missing Elements," IEEE Spectrum, Jun 92, pp. 38-41.

41. Kemerer, C.F., "How the Learning Curve Affects CASE Tool Adoption,"
IEEE Software, May 92, pp. 23-28.

24

42. Lee, Earl, Senior Test Engineer for IBM Federal Systems Company Houston,
informal discussions in iun 92.

43. Dumont, A.B., "Quality in Engineering," Proceedings of the Institate of Radio
Engineers, Nov 50.

25

BIBLIOGRAPHY

1. Bergman, M., "The Evolution of Software Testing Automation," Proceedings
of the 8th International Conference on Teting Computer Software,
International Test and Evaluation Association, 17-20 Jun 91, pp. 1-10.

2. Deimel, LE., Scenes of Software Inspections, CMU/SEI-91-EM-5, Software
Engineering Institute, Carnegie-Mellon University, May 91.

3. DeMillo, R.A, McCracken, WM., Martin, R.J., and Passafiume, J.F,
Software Testing and Evaluation, Benjamin-Cummings Publishing Co., 1987.

4. Dyer, M., The Cleanroom Approach to Quality Software Development, Wiley

and Sons, Inc., 1992.

5. Fear, H.S., "Creating A Test Process," Proceedings of the 8th International
Conference on Testing Computer Software, International Tbst and Evaluation
Association, 17-20 Jun 91, pp. 35-43.

6. Fewster, M.A., "The Managing Director Wants 100% Automated Testing: A
Case History," Proceedings of the 8th International Conference on Testing
Computer Software, International Test and Evaluation Association, 17-20 Jun
91, pp. 59-70.

7. Kelly, J.C., Sherif, J.S., and Hops, J., "An Analysis Of Defect Densities Found
During Software Inspections," Journal of Systems and Software, vol. 17, Feb
92, pp. 111-117.

8. Martin, R.J., "The Challenge of Software Engineering Project Management:
Ten Years Later", SERC-TR-73-P, Software Engineering Research Center,
Purdue University, May 90.

9. Mays, R.G., Jones, C.L, Holloway, G.J., and Studinski, D.P., "Experiences
with Defect Prevention," IBM Systems Journal, vol. 29, no. 1, 1990, pp. 4-32.

10. O'Neill, D., "What Is the Standard of Excellence? New Views of Mature
Ideas on Software Quality Productivity," IEEE Software, May 91, pp.
109-111.

11. Parnas, D.L, van Schouwen, k.J., and Kwan, S.P, "Evaluation of
Safety-Critical Software," Communications oftheACM, vol. 33, no. 6, Jun 90,
pp. 636-648.

12. Schneck, P.A., "Virtually Defect-Free Code as a Direct Result of a
Well-Defined Comprehensive Testing Method," Proceedings of 8th
International Conference on Testing Computer Software, International Test and
Evaluation Association, 17-20 Jun 91, pp. 133-141.

26

13. Thebaut, S.M., and Martin, R.J., "SERC Affiliate Current Practices,"
SERC-TR-32-P, Software Engineering Research Center, Purdue University,
1989.

14. Draft DoD Software Technology Strategy, DoD Software Technology Working
Group, Dec 91.

15. Presentations of the 1990 Multiservice Software Test and Evaluation
Symposium, Reston, VA, 30 Oct - 1 Nov 90.

16. Quality Program, U.S. Army Technical Bulletin (TB) 18-102, Army
Automation, Mar 84.

17. Report of Thsk Force-on Military Software, Defense Science Board, 1 Jul 87.

18. Software Test Tcob Report, U.S. Air Force Software Technology Support
Center (S'ISC), Hill AFB, Utah, 1991.

1y. Testing of Computer Software Systems, U.S. Army Technical Bulletin (TB)
18-104, Army Automation, 20 Aug 82.

20. U.S. Army Software T&E Standards and Regulations Reference Guide
(Draft).

21. Using Test Data Generators to Reduce Software Development Costs, U.S. Army
Tbchnical Bulletin (TB) 18-22, Management Information Systems, 10 May
74.

27

APPENDIX - List of Acronyms

AAS Advanced Automation System

AIRMICS Army Institute for Research in Management Information,
Communications, and Computer Sc:ences

ANSI American National Standards Institute

Army STEP Army Software Test and Evaluation Panel

C2 Command and Control

C3H Command, Control, Communications, and Intelligence

CASE Computer Assisted Software Engineering

CMM Capability Maturity Model

DoD Department of Defense

DoD STEP DoD Software Test and Evaluation Project

FSC Federal Systems Company

FSD Federal Sector Division

IBM International Business Machines Corporation

IEEE Institute of Electrical and Electronics Engineers

IV&V Independent Verification and Validation

MIS Management Infcrmation System

MSCR Materiel System Computer Resource

NASA National Aeronautic and Space Administration

OASD Office of the Assistant Secretary of Defense

SEI Software Engineering Institute

SSC Standard Systems Center

TQM Total Quality Management

28

